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1. Non-dimensionalization 

We	non‐dimensionalize	all	physical	quantities	as	follows,	
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where	 	 is	concentration	of	species	i,	with	i=Na+,	Cl,	1,	2,	3,	and	4.	Each	is	
scaled	by	 	 which	is	the	bulk	concentration	of	NaCl	in	the	
intracellular/extracellular	domains.	Here	 	 is	set	to	be	184	mM,	equal	on	both	

sides,	so	that	the	Debye	length	 	 is	1nm	when	the	relative	

permittivity	 80.	 	 is	the	electric	potential	scaled	by	 / 	 with	 	
being	the	Boltzmann	constant;	 	 the	temperature;	e	the	elementary	charge.	All	
relevant	external	potentials	U	are	scaled	by	 .	All	sizes	s	are	scaled	by	R,	which	
is	the	radius	of	vestibule	as	shown	in	Fig.	1(b).	R=1nm	here.	The	time	t	is	scaled	
by	 / ,	with	 	 being	a	diffusion	coefficient	that	can	be	adjusted	later	to	be	
consistent	with	the	time	spans	of	on/off	currents	measured	in	experiments	
(caused	by	the	movement	of	arginines).	The	diffusion	coefficient	of	species	i	is	
scaled	by	 .	The	coupling	constant	 	 of	PNP‐steric	model	based	on	
combining	rules	of	Lennard	Jones,	representing	the	strength	of	steric	interaction	
between	species	i	and	j,	is	scaled	by	 / 	 [1,2].	For	simplicity,	we	assume	

, for	all	
	0,					for	all	 	 , , 1,2,3,4.	 Note	that	here	we	only	consider	steric	

interaction	among	arginines.	We	think	they	are	a	crucial	source	of	correlated	
structural	change	and	motion	(of	mass	and	charge).	The	consideration	of	steric	
effect	among	arginines	is	justified	by	the	fact	that	arginines	are	generally	
crowded	in	hydrophobic	plug	and	vestibules.	The	flux	density	of	species	i,	 ,	is	
scaled	by	 / ,	and	therefore	the	electric	current	I	is	scaled	by	 .	For	
simplicity	of	notation,	we	will	drop	~	for	all	dimensionless	quantities	shown	in	
all	equations.	 	
	
2.	Shape	of	potential	of	mean	force	(PMF)	in	the	hydrophobic	plug	

Here,	we	simply	assume	a	hump	shape	for	PMF	in	the	hydrophobic	plug	as,	 	

							 , tanh 5 tanh 5 1 ,			when	 	is	in	zone	2,
0,				when	 	is	in	zone	1	and	3,

																								(S1)	

with	 , 	 set	to	be	5	for	a	good	agreement	with	experimental	measurements.	
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Theoretically,	if	we	set	 , 	 too	large,	the	gating	current	would	be	slow	and	
perhaps	small	because	it	would	be	very	difficult	for	arginines	to	move	across	this	
barrier.	The	double	tanh	functions	are	designed	to	smooth	the	otherwise	
top‐hat‐shape	barrier	profile,	which	is	not	good	for	numerical	differentiation	
because	of	its	awkward	infinite	slopes.	This	smoothing	is	simply	based	on	the	
belief	that	the	energy	barrier	in	a	protein	structure	does	not	have	a	jump.	In	
future	work,	it	would	be	wise	to	compute	the	PMF	from	a	specific	model	of	charge	
distribution	(both	permanent	and	polarization)	constructed	from	a	combination	
of	structural	data	and	molecular	dynamics	simulations,	if	feasible.	
	
3.	Governing	equations	derivation	from	energy	variation	methods	

Governing	equations	Eqs.	(1‐4)	were	derived	by	energy	variational	methods	
based	on	the	following	energy	(in	dimensional	form):	

∑ 	 | | ∑ 	 ∑

∑ 	 , ,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (S.2)	

where	the	first	term	is	entropy;	second	and	third	terms	are	electrostatic	energy;	
the	fourth	term	is	the	constraint	and	barrier	potential	for	arginines;	the	last	term	
is	the	steric	energy	term,	based	on	Lennard‐Jones	potential	[1,3].	The	Poisson	
equation	Eq.	(1)	is	derived	from	the	variation	of	energy	with	respect	to	electric	
potential	

0,	

and	species	flux	densities	in	Eqs.	(3,4)	are	derived	by	

,							 ,	

where	 	 is	the	chemical	potential	of	species	i.	
	
4.	Quasi‐steadiness	assumption	for	Na+	and	Cl‐	

Here	we	assume	quasi‐steady	state	for	Na+	and	Cl‐,	which	means	 0,

Na, Cl.	 The	steady	state	assumption	here	is	justified	by	the	fact	that	the	diffusion	
coefficients	of	Na+	and	Cl	in	vestibules	are	much	larger	than	the	diffusion	
coefficient	of	arginine	based	on	the	very	narrow	time	span	of	the	leading	spike	of	
gating	current	measured	in	experiments.	The	spike	comes	from	the	linear	
capacitive	current	of	vestibule	when	the	command	potential	suddenly	rises	or	
drops.	This	quasi‐steady	state	assumption	is	essential	for	the	success	of	our	



3	

calculations. Otherwise	using	realistic	diffusion	coefficients	for	Na+	and	Cl‐	would	
render	Eqs.	(1‐4)	too	stiff	to	integrate	in	time.	The	spike	contaminating	the	gating	
current	is	removed	in	experiments	by	a	simple	technique	called	P/n	leak	
subtraction	(see	Section	11;	n	typically	is	4).	P/n	leak	subtraction	is	also	used	to	
subtract	the	linear	capacity	current	of	all	the	membranes	in	the	real	system	that	
are	not	included	in	our	model.	How	to	do	leak	subtraction	computationally	will	
be	discussed	in	Section	10.	
	
5.	Formulation	of	boundary	conditions	

Types	of	boundary	conditions	are	illustrated	in	Fig.	1(b).	Note	the	no‐flux	
boundary	conditions	specified	in	Fig.	1(b).	One	prevents	Na+	and	Cl	from	
entering	the	hydrophobic	plug	(zone	2)	with	low	dielectric	coefficient.	The	other	
boundary	condition	constrains	S4	motion	and	so	prevents	the	arginines	from	
leaving	the	vestibules	into	intracellular/extracellular	domains.	

Boundary	and	interface	conditions	for	electric	potential	 	 are	

0 ,				 ,				Γ Γ ,	

,				Γ Γ

,					 2 0.	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (S.3)	

These	are	Dirichlet	boundary	conditions	at	both	ends	and	continuity	of	electric	
potential	and	displacement	at	the	interfaces	between	zones.	Boundary	and	
interface	conditions	for	arginine	are	

0, 2 , 0,			 , , ,				 ,
, ,	 , , , ,

	 , ,			 1,2,3,4,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (S.4)	
where	no‐flux	boundary	conditions	are	placed	at	both	ends	of	the	gating	pore,	
consisting	of	vestibules	and	hydrophobic	plug,	to	prevent	arginines	and	S4	from	
entering	intracellular/extracellular	domains.	The	others	are	continuity	of	
concentration	and	flux	at	interfaces	between	zones.	Boundary	conditions	for	Na+	
and	Cl	are	

0, 0, 2 , 2 , 1,			

	 , , , , 0,		 	 	 	 	 	 	 	 	 	 (S.5)	

where	Dirichlet	boundary	conditions	are	placed	at	both	ends	of	the	gating	pore	to	
describe	the	concentrations	for	Na+	and	Cl	as	the	bulk	concentration.	No‐flux	
boundary	conditions	at	both	ends	of	hydrophobic	plug	describe	the	
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impermeability	of	Na+	and	Cl	into	hydrophobic	plug.	
	
6.	Parameters	fitting	

We	have	tried	and	found	Di=50,	i=1,2,3,4,	K=3,	KS4=3,	bS4=1.5	provide	the	
best	fit	to	the	important	experiments	reported	in	[4].	Several	things	are	to	be	
noted	about	the	parameter	values	specified	above:	(1)	there	is	no	experimental	
measurement	of	diffusion	coefficient	of	arginine	inside	vestibule	and	plug	
available	that	we	can	use	for	simulation.	Imprecise	setting	of	the	values	of	these	
diffusion	coefficients	only	affects	the	scale	of	time	in	I‐V	curve,	but	not	its	shape.	
That	is	why	we	set	time	coordinate	to	be	in	an	arbitrary	unit	later	in	results,	and	
here	we	only	focus	on	comparing	the	shape	of	IV	curves	with	experiments	in	[4].	
(2)	K,	KS4,	and	bS4	were	particularly	determined	by	fitting	with	QV	curve	in	
experiment	[4].	The	QV	curve	is	very	sensitive	to	K	and	KS4,	and	many	efforts	have	
been	taken	to	achieve	proper	values	for	them.	The	method	of	fitting	is	done	by	
trial	and	error.	Choosing	incorrect	K	and	KS4	would	end	up	serious	mismatch	of	
QV	curve	with	experiment	[4]	as	demonstrated	by	the	case	of	K=3	and	KS4=12	in	
Fig.	1	here.	The	choice	of	K=3	and	KS4=3	fits	experiment	[4]	best	and	is	adopted	
for	the	rest	of	simulations.	

	

	
Figure	1.	Simulated	QV	curves	under	different	K	and	KS4	compared	with	
experimental	counterpart	from	[4].	Note	that	the	experimental	data	in	[4]	was	
scaled	to	4e.	
	
7.	Derivation	of	Ampere’s	law	in	Maxwell’s	equations	by	Poisson	equation	
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and	species	transport	equation	
Eq.	(8)	is	consistent	with	Ampere’s	law	in	Maxwell’s	equations:	

,	 	 	 	 	 	 	 	 	 	 	 (S.6)	

or	equivalently,	

∙ 0,	 	 	 	 	 	 	 	 (S.7)	

where	 	 is	the	electric	field	and	 	 is	flux	density	of	charge	(current	density).	Eq.	
(S.7)	tells	us	that	the	total	current	is	conserved	everywhere	and	it	consists	of	flux	

of	charges	 	 and	displacement	current	 .	Eq.	(S.7)	can	be	derived	from	the	

Poisson	equation	and	species	transport	equation	like	Eq.	(1)	and	Eq.	(2).	Starting	
from	Poisson	equation	in	dimensional	form:	

∙ ∑ ,	 	 	 	 	 	 (S.8)	
or	equivalently	

∙ ∑ .	 	 	 	 (S.9)	

Taking	time	derivative	of	Eq.	(S.9),	

∙ ∑ ,	 	 	 	 	 	 	 	 	 	 	 (S.10)	

and	using	species	transport	equation	based	on	mass	conservation,	

∙ 0,	 	 	 	 	 	 	 	 	 	 	 	 	 (S.11)	

then	

∙ ∑ ∙ ∑ ∙ ,	 	 	 	 	 	 	 	 	 	 	 (S.12)	

which	becomes	exactly	Eq.	(S.7)	by	defining	

=∑ .	 	 	 	 	 	 	 	 	 	 	 	 	 (S.13)	
A	more	general	treatment	that	does	not	involve	assumptions	about	 	can	be	
found	in	[5‐7].	 	

Casting	Eq.	(S.7)	into	the	present	1D	framework	by	integrating	it	in	space	and	
applying	the	divergence	theorem,	we	have	

,
, 0

,
0, .	 	 	 	 	 	 	 (S.14)	

Comparing	with	Eq.	(11),	 	

, 0 , , ,	 	 	 	 	 	 	 	 	 	 (S.15)	

which	justifies	the	naming	of	displacement	current	in	Eq.	(11).	 	
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8.	Numerical	method	
	 High-order	multi�block	Chebyshev	pseudospectral	methods	are	used	here	
to	discretize	Eqs.	(1‐4)	in	space	[8].	The	resultant	semi	discrete	system	is	then	a	
set	of	coupled	ordinary	differential	equations	in	time	and	algebraic	equations	(an	
ODAE	system)	[9].	The	ordinary	differential	equations	are	chiefly	from	Eq.	(2),	
and	algebraic	equations	are	chiefly	from	Eq.	(1)	and	boundary/interface	
conditions	Eqs.	(S.3‐S.5).	This	system	is	further	integrated	in	time	by	an	ODAE	
solver	(ODE15S	in	MATLAB	(The	MathWorks,	Natick,	MA)	[10,11])	together	with	
appropriate	initial	condition.	ODE15S	is	a	variable order variable step	(VSVO)	
solver,	which	is	highly	efficient	in	time	integration	because	it	adjusts	the	time	step	
and	order	of	integration.	High�order	pseudospectral	methods	generally	provide	
excellent	spatial	accuracy	with	economically	practicable	resolutions.	A	
combination	of	these	two	techniques	makes	the	whole	computation	very	efficient.	
This	is	particularly	important	here,	since	numerous	computations	have	to	be	
tried	during	the	tuning	of	parameters.	Efficiency	will	be	vital	in	future	
calculations	comparing	theory	and	experiment	in	a	wide	variety	of	mutants	and	
experimental	conditions.	
	
9.	Computation	of	flux	of	charge,	displacement	current	and	total	current	

According	to	definition	in	Eq.	(10),	flux	of	charges	at	the	middle	of	gating	
pore,	 /2, ,	and	both	ends	of	gating	pore,	 0, 	 and	 2 , ,	
should	be	computed	by 

, ∑ , ,	 	 	 	 	 (S.16)	

0, 0 ∑ 0,, ,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (S.17)	
2 , 2 ∑ 2 ,, .	 	 	 	 	 (S.18)	

Except	 , ,	 0, 	 and	 2 , 	 are	trivially	zero	due	to	the	

implement	of	quasi‐steadiness	 0, Na, Cl,	 in	vestibules,	which	causes	

	 and	 	 to	be	uniform	in	vestibules	by	Eq.	(2),	and	further	become	zero	by	
the	no‐flux	boundary	conditions	for	 Na 	 and	 Cl 	 at	the	bottom	of	vestibules	as	
described	in	Eq.	(S.5).	We	have	to	alternatively	reconstruct	 0, 	 and	
2 , 	 by	charge	conservation	of	 Na 	 and	 Cl ,	

0, ∑ , ,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (S.19)	

2 , ∑ , .	 	 	 	 	 	 	 	 	 	 (S.20)	
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After	obtaining	 0, 	 and	 2 , ,	we	can	further	reconstruct	the	flux	of	
charges	 , 	 at	zone	1	and	zone	3	by	(8)	and	(9),	

, 0, ∑ 	 ,			 ∈ 0, ,	 	 	 	 (S.21)	

, 2 , ∑ 	 ,			 ∈ , 2 .	(S.22)	

Flux	of	charge	at	zone	2	is	simply	
, ∑ , ,		 ∈ , ,	 	 	 	 	 (S.23)	

since	 Na 	 and	 Cl 	 are	not	allowed	to	enter	zone	2,	the	hydrophobic	plug.	
	
10.	Removing	spike	in	total	current	

In	voltage‐clamp	experiments,	subtracting	this	linear	capacitive	component	
and	removing	the	spike	from	gating	current	is	done	by	‘leak	subtraction’,	in	
various	forms,	e.g.,	P/4	(see	details	in	Section	11)	In	reality,	this	linear	capacitive	
current	that	is	subtracted	in	this	procedure	comes	from	both	the	lipid	bilayer	
membrane	in	parallel	with	the	gating	pore.	Here,	we	only	considered	the	
capacitive	current	from	solution	EDL	of	vestibule	inside	the	gating	pore	and	
ignored	the	membrane	capacitive	current	because	we	simply	use	Dirichlet	
boundary	conditions	for	 	 at	both	ends	of	the	gating	pore	in	Eq.	(S.3).	Actually,	
capacitive	current	of	the	membrane	in	parallel	with	the	gating	pore	would	be	
much	larger	than	vestibule	capacitive	current.	Following	the	idea	of	the	
experiment	[4],	we	calculated	 0, 	 with	V	rising	from	‐150	mV	to	‐140	mV	at	
t=10,	and	dropping	back	to	‐150	mV	at	t=150.	We	chose	from	‐150	mV	to	‐140	
mV	because	essentially	none	of	the	arginines	move	across	the	hydrophobic	plug	
in	this	hyperpolarized	region.	The	voltage	step	quickly	charges	and	discharges	
solution	EDL	in	vestibules,	and	the	computed	time	course	of	 0, 	 is	just	two	
spikes	at	on	and	off	of	the	command	potential.	Subtracting	this	hyperpolarized	
0, ,	multiplied	by	a	proportion	factor	(due	to	the	linearity	of	capacitive	

current),	from	its	original	counterpart	will	then	remove	the	spikes,	and	the	
unspiked	 0, 	 is	shown	in	Fig.	5(a).	In	preliminary	calculations	with	the	model,	
when	the	command	voltage	pulse	rises	faster,	the	early	spike	becomes	larger	and	
is	still	visible	even	after	subtraction,	suggesting	that	is	the	origin	of	the	early	
transient	gating	current	in	experiments	[12‐14].	

11.	Removing	linear	capacitive	current	to	obtain	gating	current	in	
experiments	 	
	 Our	computations	have	limited	fidelity	at	short	times	because	of	time	step	
limitations	in	integrating	stiff	systems.	The	spike	artifacts	are	one	example,	
described	previously.	Experimental	measurements	[12,15]	of	the	fast	transient	
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gating	current	are	fascinating	and	our	calculations	will	be	extended	to	explore	
more	of	them	in	future	study	by	using	greater	resolution	in	time.	
	 A	more	general	consideration	is	the	subtraction	procedure	used	in	
experiments	to	isolate	gating	current	from	currents	arising	from	other	sources.	
Channels	and	their	voltage	sensors	are	embedded	in	lipid	membranes,	therefore	
they	are	‘in	parallel’	with	large	capacitive	currents	of	the	lipid	bilayer.	The	lipid	
membrane	has	a	large	capacitance	(	 ≅ 8 10 	farads/cm 	)	that	has	
nothing	to	do	with	the	current	produced	by	charge	movement	in	the	voltage	
sensor.	Fortunately,	the	capacitance	 	 is	a	nearly	ideal	circuit	element	and	the	
current	to	charge	it	is	entirely	a	displacement	current	accurately	described	by	

∂V ∂t⁄ 	with	a	single	constant	 .	V	is	the	voltage	across	the	lipid	
capacitor.	Note	that	 	does	not	include	any	current	or	flux	of	charge	carried	
across	the	lipid.	 	

In	experimental	measurements,	 	 is	always	present.	Experimental	
measurements	always	mix	the	displacement	currents	of	lipid	membrane	and	
voltage	sensor.	Lipid	membrane	current	usually	dominates	the	measurement	of	
gating	currents	in	native	preparations	and	remains	large	in	systems	mutated	to	
have	unnaturally	large	numbers	of	voltage	sensors.	
	 A	procedure	to	remove	the	lipid	membrane	current	is	needed	if	the	gating	
current	of	the	voltage	sensor	is	to	be	measured.	The	procedure	introduced	by	[16]	
has	been	used	ever	since	in	the	improved	P/4	version	developed	by	[17]	
reviewed	and	discussed	in	[18]. Also,	see	another	approach	in	[19]	and	[20]. 
Schneider	and	Chandler’s	procedure	[19]	estimates	the	so‐called	linear	current	

∂V ∂t⁄ 	in	conditions	in	which	the	voltage	sensor	and	 	 behave	as	ideal	
circuit	elements.	The	voltage	sensor	might	then	have	a	component	linear	in	
potential.	An	ideal	capacitor	has	a	capacitance	 	 independent	of	voltage,	time,	
current,	or	ionic	composition.	The	Schneider	procedure	then	subtracts	that	linear	
current	 —plus	any	linear	component	of	voltage	sensor	current—from	the	total	
current	measured	in	conditions	in	which	the	voltage	sensor	does	not	behave	as	
an	ideal	capacitor.	The	leftover	estimates	the	nonlinear	properties	of	the	charge	
movement	in	the	voltage	sensor.	That	is	to	say,	the	leftover	estimates	the	charge	
movement	of	the	voltage	sensor	that	is	not	proportional	to	the	size	of	the	voltage	
step	used	in	the	measurement.	The	leftover	is	called	gating	current	here	and	in	
experimental	papers. 

The	gating	current	reported	in	experiments	[16]	can	miss	a	component	of	the	
displacement	current	of	the	voltage	sensor,	if	it	uses	the	linear	subtraction	to	
estimate	 .	These	procedures	can	remove	more	than	the	current	through	the	
lipid	membrane	capacitor	 .		
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Clearly,	some	of	the	current	produced	by	movements	of	the	arginines	in	the	
voltage	sensor	will	be	a	linear	displacement	current,	a	linear	component	of	gating	
current	and	it	would	not	be	present	in	the	reported	gating	current	determined	by	
some	linear	subtraction	procedures.	In	particular,	if	the	arginine	system	is	
present	at	the	‘control’	potential	contributing	a	current	linear	in	potential,	this	
problem	would	occur.	Of	course,	if	the	arginine	system	is	immobilized	and	
inactivated	at	the	control	potential	and	so	contributes	no	current	flow	under	that	
condition,	this	problem	would	not	occur.	

Other	systems	may	contribute	to	the	linear	displacement	current	as	well,	for	
example,	i)	all	sorts	of	experimental	and	instrumentation	artifacts	and	ii)	
displacement	current	in	the	conduction	channel	itself.	The	conduction	channel	of	
field	effect	transistors	produces	a	large	displacement	current	often	characterized	
as	a	capacitance	that	involves	diffusion	and	is	described	by	drift	diffusion	
equations	quite	similar	to	the	PNP	equations	of	the	open	conduction	channel.	

Most	systems	have	substantial	motions	that	are	linear	in	voltage	(even	if	the	
system	is	labeled	‘nonlinear’).	The	linear	term	is	present	in	most	systems,	just	as	
it	is	present	in	most	Taylor	expansions	of	nonlinear	functions.	 	
	 	 	 	 The	linear	component	that	can	be	missed	in	experiments,	and	removed	in	
these	calculations,	may	have	functional	and	structural	significance.	The	voltage	
sensor	works	by	sensing	voltage,	for	example,	by	producing	a	motion	of	arginines.	
That	motion—the	response	of	the	voltage	sensor	in	this	model—includes	a	linear	
component.	The	signal	passed	to	the	conduction	channel,	to	control	gating,	is	
likely	to	include	or	depend	on	the	linear	component	of	sensor	function.	Confusion	
will	result	if	a	significant	linear	component	exists	and	is	ignored	when	a	model	is	
created	that	links	the	voltage	sensor	to	the	gating	process	of	the	conduction	
channel.	Direct	measurements	of	the	movement	of	arginines	(e.g.,	with	optical	
methods)	are	likely	to	include	the	linear	component	and	so	should	not	agree	with	
experimental	measurements	of	gating	current	or	with	the	currents	reported	here	
if	the	linear	component	exists	and	is	significant	in	size.	
	 	 	 	 If	the	P/4	procedure	subtracts	a	charge	movement	in	a	control	system	in	
which	the	arginines	do	not	move	at	all	(because	they	are	immobilized	and	
inactivated,	in	that	sense),	then	the	resulting	estimate	of	gating	current	will	
contain	a	component	linear	in	voltage.	Thus,	the	interpretation	of	the	corrected	
record	depends	on	the	details	of	immobilization	and	inactivation,	topics	that	are	
beyond	the	scope	of	this	paper	and	our	present	work.	
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