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SUMMARY
I:p':r-—ﬁ-mm:fﬂld equation governing the linear stability of a liquid layer
g down an mclined plane appears as a differential eigenvalue problem with
e involved nonlinearly in the free surface baundary eanditions whieh
problem mote difficult to solve than most other Orr-Sommerfeld prob-
numerical solver based on Chebyshey spectral collocation discretization
with the eompanion matrix method is employed Lo salve the problem.
superiority in the accuracy of the solver is shown by its validation with
papers.

stability Orr-Sommerfeld problem of a viscous fluid layer flow-
inelined plane under the action of gravity is re-solved here' by a
ieal approach-spectral collocation method. Since the paper focuses
ails of numerical method, the derivation of the governing differential
, that is Orr-Sommerfeld equation, and the associated boundary con-
it be found in Yih® and Lin®. As to its physics, a recent review by
ibing the linear and nonlinear instabilities of a free-falling film is
ng to.
g Lin®, the geometric configuration of the flow is shown in Fig. 1.
‘denoting the Nusselt flat-film thickness, 7 the angle of inclination of
e. Using the maximum velocity of the base flow U, = gsin 8/2v (g is
onal acceleration, v the kinematic viscosity] as the characteristic
d the characteristic length, the dimensionless governing differential
s the famous Orr-Sommerfeld equation,

@ — 2a%¢" + a'd = iaRe[(U — )¢ — o’d) = U"¢), (1)

@ is the wavenumber, ¢ the complex wave speed, Re = Undfv the
mumber, [/ the dimensionless velocity profile of the base flow:

Uig)=1- N‘J; {2)

ction of y representing the y-direction distribution of the perturbed
ion 4 by

W = ¢ly) explie(r — ). (3)
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 Eq:(1), (6), (7) and (8} or (8a) are homogeneous and a nontrivial solution
exists if there exists a relation between e, e, 3, Re, and 5§ (or 4):

floy e, 8, Re, Sor~)=10. (9

hey construct a differential eigenvalue problem with the eigenvalue ¢ and the
ciated eigenfunction ¢ to be solved. Although, the dimensionless veloc-
profile of the base flow is same as plane Poiseuille flow, the current Orr-

erfeld problem is much more difficult to solve than that for plane Poiseuille
It is because the boundary conditions Eq.(7) and (8) at free surface involve
eigenvalue nonlinearly. For temporal instability, c is complex (¢ = ¢ +1¢).
{9) implies ¢, = c (@, Re}; & = ci{a, Re) if § and S (or 7) are given. The
is stable if c; < 0 and unstable if ¢; > 0, and {a, Re) = 0 gives a neutral
stability curve on a—Re plane for given 3 and 5 {or 7).

‘There are two linear stability modes encountered in the current problem:
face mode (also named as soft mode) and shear mode (also named as hard
). The surface mode is essentially surface wave driven by gravity-capillary
s slightly modified by viscosity, and the shear mode is basically the Tollmien—
chting wave modified by the presence of the free surface. The surface
usually with long wavelength (compared with d) is the dominant unsta-
mode when Reynolds number is small to moderate (1 < Re < 300 suggested
Chang?), while the shear mode becomes dominant when Reynolds number

Figure 1: Definition sketch for a liquid layer flowing down an inclined plane.

;'Ij.m‘mint:ity perturbations u' and v' in the = and y directions can be expressed
in terms of ¥ by .

v = dfdy, (4) ge (He > 1000 suggested by Chang') with wavelength comparable to or
I'.I'; = _'MJFEII. {5) alOTLE] thEII I'f..
The e - Yih® solved the problem by perturbation expansion with the restriction to
 boundary conditions are nonslip conditions at the bottom wall (y = —1), ug waves (surface mode) and small Reynolds numbers, and obtained the fa-
d{=1)=g'(-1) =0, (6) result for the eritical Reynolds number
and the continuity of shear and normal stresses at the free surface (y = 0), Tw, = Emt,ﬂ
, 2 T
#(0)+ (o = Z) 60 =0, (7) g _ , _
c As to the shear mode, Lin® analytically solved the problem motivated by the

_f Zeotf+ o?S Re e N Sommerfeld solutions of plane Poiseville flow. However, Lin made a rmis-
(a e ) #(0) +a(Re ' +3ia)g’(0) - id"(0) =0,  (8) on boundary condition Eq.(8) (the sign of the first term at the left-hand

e of Eq.(8) is positive in Lin®), which is pointed out by De Bruin®. De Bruin
s Runge—Kutta integration to integrate Eq.(1) shooting for e with orthogo-
ization procedure to solve the problem with the correct boundary condition,
e orthogonalization procedure is chiefly to keep particular solutions from de-
- pending on each other (caused by the stiffness of Eq.(1)) during the integration.
Floryan et al.® following De Bruin's numerical method solved the problem with
fq.(8a) with nonzero surface tension extensively for both surface and shear
Modes. Chin et al.¥ also caleulates the problem with Eq.(8a) by finite difference

where § = We™! = T/pdU? (We is the Weber number, T' the surface tension,
p the density) and ¢ = ¢ = 1. Since S is dependent on U, (and thus on flow
tate), some papers prefer using the Kapitza number 4 = 3Y3T [pu*/3g'* =
SRe%3(2 sin §)'/* which is only a function of the physical properties of the
liguid. Then, Eq.(8) is replaced by

9 3 =233 -1/3
_.(a oot B+ o ‘TR; (3sin 8) )ﬂﬂ}-l—a[Rec'{rﬁia]lﬂﬂ}

—ig"(0) =0, (3a)
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method with an additional eonsideration on the from factor effect on the veloe.
ity profile of the base flow. Ho and Patera” computes the problem with Fe.(8)
using Hermitian finite element. methad as a preliminary study in their specteal
element Navier-Stokes simulation of a free falling film.

The numerical methods used in the papers mentioned above are cither
Hunge—Kutta integration shooting method or finite difference/element meth-
ods. The former can not calculaie the whole Orr-Sommerfeld spectriin and
is sensitive Lo the inilial guess on e, Also, during iteration, the search on e
complex plane can sometimes be tedious. The latter can caleulate the whole
Orr-Sommerfeld spectrum but the order of accuracy is low. In Lhis paper,
the novel spectral collocation method with muich higher order of accuracy than
conventional finite difference felement methods is employed Lo solve the whole
Orr-Sommerfeld spectrum [Tor hoth surface and shear modes) from which the
mosl unstable eigenvalue ¢ is identified. Hased on spectral collocation methad,
the solver is easily developed and highly efficient. The numerical procedure is
derived in section 2 (numerical method) and the results are validated with Lin”,
De Bruin® and Flaryan et al.® in section 3 (results and discussion).

2. NUMERICAL METHOD

The physical domain y € [—1, 0] needs to be mapped into the computational
domain z € [—1,1] by

y="5— (10)

@#lylz)) is then expanded as a series of Chebyshev polynomials,

#lu(z)) = Y aTil=). (1)
k=0

The reason lo choose Chebyshey polynomials ameong all kinds of orthogonal
polynomials is that Chebyshev polynomials are orthogonal with respect to the
weight function 1/{1 — =*)'/* which underlies its emphasts near the boundaries
and is particularly suitable to deseribe the boundary layer phenomenon fre-
quently encountered in flow instability. Eq.(1), (6), (7) and (8) or (8a) can then
be rewritten in terms of differential operators with respect to =

Lyd = elad, (12)
Bad = Bya=10, at z=-—1, (13}
Fad = eFyd,  at ==1, (14)
Eap = cFid+2Fié, at z2=1, (15)

Ls

Ly
Hy
Hy
ﬁl']
Fy

Fiy

A

= 16d"'/ds* — (8a” + diaRe U7) 4% jd:*
+ (o' + i’ Re U + iaRe ™),
= —haRed® fd=* + i Re;
= 1,
= djdz,
= 4dfd 4 (o +2),
= 4dPfd? + o,
= Rd®fuz? — (6o + 2afe)didz — i(20col 3 + a"SRe),
= 8d*d* — (Ga® + diake) d/dz,
= ZiwRed/dz.

E; = 8d'/d:” — (6a” +2ialte)d/ds — i(2acot 8
FaPy R (3 sin 6)17),

or boundary condition (3a).

P (-:\_T) i=01,2....N.

,'-i_|!l+_; - -

CroTEn A #i

i 1Si=jEN-1,
(Duyg=g "0

WM j=j=0

__'l'_'*‘*'""; 11_ j_=.i|=J‘if1_

(L), = 16(Dy"); - (8o + dioReli(z)) (D)

(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(21)

(22a)

i:|.{12]—|:15'] are to be collocated at Chebyshev-Gauss-Lobatto quadrature
oints (Canuto et al.?], distributed as

(23)

with the entry ¢; = é{y(z;)) denotes the value of ¢(y(z])) at the collocation
in Bq.(25). d/d: is then approximated by the Chebyshev collocation
ive matrix Dy (Canulo el al.?):

(26)

likewise, d"/d=" is approximated hy Dy", The differential operators in
9.(16} (24) can then be translormed inlo malrix operalors:
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4 {ul +ia’Re l'{z) + taRe Uz, :‘j Sii {m ; H_.. can be solved for the eigenvalue ¢ satislving

I[L,]IU [~} —4!IGRE{DN=:I{I' +i&3HEE.'}, {E!' - dEf.(G— L'H—CIK} :.u‘ l:‘i”]
(Bo)ij = &, (20) 0} is numerically approximated by minimizing | det(G—cH —* K'}|, which
(B.)i; = (Du)y, [aﬂj eformed by an IMSL routine UMINF based on a quasi-Newton method
(B,); = 4(D7),+la"+2)4,, (31) itial guess on ¢ = o, +ie;. However, when N is large, the computer cal-
(F)y = 4(BY)+ohis: (32) af i.;-itzaf-nina_nt T:?HUWH I'.‘Iil-::il_'l,l',. [,ﬂn.ﬂremf:dlia:i alti;'lnati;'e iﬁtt].n le:imiz_e

= e . i ot B &3S o e e condition number of the matrix rather than the determi-

(Eyi H[D}'n‘}” I:E&! + ETQRE]{DN]U sl el bisr(38) The idea is that when the reciprocal of the condition number is
(Fy); = 8(Dy )i; — (6a” + dicRe)(Dy)ij, (34) the matrix is extremely ill-conditioned and therefore nearly singular,

(F)i; = ZHaRe(Dy)s, (35) roblem in using TMSL routine UMINT i= thal & close initial guess on
not available, is required for this minimization scheme to sueceed. To
Eq.(36) can be transformed into a linear matrix generalized eigenvalue

by the companion matrix method ( BI]EIEC:; and Morris!):

R B R 1R (

and I are the identity and null matrices with the same ranks as G. H

q.{41) can be directly solved by the IMSL routine GVCCG based on

orithm. However, the matrix size in Hq.(41) is twice as large as Faq.(40),

computation is not economic when N is large. Besides, its round-—off

accumulate to significant figures when N is very large. Hence, ¢ is

t8b calculated by Eq.(41) with a smaller N, then this € is used as a good
ess for Fig.(40) for further improvement with a larger V.

or
(E.)i; = 8(Dy%); —(6a” + 2iaRe){Dy)i; — 120 cot 3
+n3-rfie"‘“{§iin 319 6., (33a)

for boundary condition (8a), where L, ... etc. denote the malrix operators
approximating Ly, ..., etc. and §; denotes Kronecker delta.

By Eq.(27)-(35), Eq.(12)-{15) are transformed into a nonlinear matrix gen-
eralized eigenvalue problem:

Go=cHd+ K, (36)

where

{E:J By f= ﬂ',
(E.) et LTS AND DISCUSSION
n.h == .
(Gl = 3 (L), 2<i<N—2 1, 0<igh, (37) 1 the boundary condition (3) is mistaken in Lin®, Lin's result is still

) paring with for numerical validation. Using the incorrect boundary
(BaJwiy 1=N-1, the current solver recomputes a series of neutral ¢ of shear mode in
(B,)n; =N 0t the comparison with Lin's result is shown in TABLE L, in which the
143 — 1 .
18 well,

{ () (o _;Elgeuvaluc ¢ under a = 1. 052553 Re = B126.:813538, in TABLE 1 is
b =i ]

[H]q = o (#5 Joss =y = i SJ < N, . {3&}

':.L!I-}I_! 2SN -2,

¢ against m::rcaamg N. The result is shown in TABLE I The
‘accuracy can be more clearly obzerved from the diagram of the relative
: N in Figure 2 based on TABLE 1L From Figure 2. the order of aceuracy
G a8 high as 33 when N is between 40 and 5.

esilis in Floryan et al.® are also recalenlated here for validation. The
o1 is shown in TATBLE IIT and IV. The agreement in TABLE HI and
o better than TABLE 1.

—_— {rF.Ju,, =0, } e (39)
p < N,
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Mable I: Current computation of shear mode eigenvalue ¢ compared with Lin® ter!
with § = 0.4 = 1. »
2 fte i
Lin ® current result, N = 60 Pt
371858 | 4,152194(5) | 0.0706 | 0.7T055577(—1) + D.3TOOTES( —4 ) 5
0.539594 | 5.164135(4) | 0.1295 | 0.1294119 — 0.1004532{ -3} E s
B.65638T | LOTE40T(4) | 0.1725 | 0.1724954 — 0.3032045{ -3} :
0.549765 | T327.3451990 | 0.2367 | 0.2972869 — 0.62056254{=3 ) E 10*
0.866308 | 5791.708505 | 0.261% | 0.2629749 — 0397281 1{—=3 ) & ;
1.039895 | 6476.701111 | 0.2640 | 0.2651037 4 0.1803931(—3): & el
1.062553 | 8126.813538 | 0.2550 | 0.2558536 4 0.5700734(—3)i E i
1.060653 | 1.195320(4) | 0.2370 | 0.2374371 + 0.8192571(=3): O g
1.014058 | 2.406454(4) | 0.2044 | 0.2043330 + 0.TTUB818(—3) . g
D.946671 | 4.799068(4) | 017500 | 01747110 + D.5498975(—3 ) w0t |
D.B52035 | 1,138520(5) | 0.1430 | 0.1426450 + 0L2646038(—=3n ;
0.7T36120 | 3.3825876G(5) | 0.1100 | 01097519 — 0.3297150{—4 ) 100 L |
0.618260 | 1.141233(6) | 0.0815 | 0.8116823(=1) — D.1218521(~3)n 20 a0 40 50
N

Table 2: eigenvalue ¢ vs, N

N [

20 | D.Z560783 + 0,7455761 —3)1
22 | 0.254 1468 4 0, 1469023 (=4 )i
24 | 0.2565135 — 0.1089530 (—2)
26 | 0.2568248 4 0.1155089 (—2)¢
28 | 0.2555736 + 0.8622085(-3)
30 | 0.2558768 + 04605001 (—3)
42 | 0.2558753 + 0.6403534 (—3)
34 | 0.2558131 + D.5617639(—3)
36 | 0,2558629 4 0,5570625( 1)
38 | 0.2558553 4 0.5T12978 (31
40 | 0.2558526 - 0.5694982(~3 )
42 | 0.2558540 4 0.5700405( -3 )
44 | 0,2558535 4 0.8T01773 (=3}
46 | 0,2558536 4 0.5T00383(— 1)
48 | 0,2558536 4 0.5700790(—3)
At | 0.2558536 4+ 0.6570073% (-4 )

Tahle 3: Current result compared with Florvan et al.®: surface modes with
=027,y = 1899.38, § = 4°.

Re 0

Florvan et al.” current result, N = 6i
1000 109780 + 0.260614(—1) | L.0O99T8 4+ 0.260603( =1}
2000 1.06222 - 0.203353( 1) | 1.06222 + 0.203355( =1 )i
5000 103441 £ 0.141295(—1)¢ | 1.03441 + 0.141295(—1)i
10000 | 1.02241 + 0.105362(—1}¢ | 1.02241 + 0.105362( 1)
40000 | 1.00084 4 0.569076(~2)i | 1.00984 + 0.569076(—2)i
100000 | 1.00582 + 0.373391(—2): | 1.00581 4 0.373666(—2)¢

1000000 | 1.00163 4 0.125600{—2)¢ | 1.00163 + 0.125521(-2)i
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Tahle 4: Current result compared with Floryan et al.%: neutral shear modes

3 E Re @ ¢
Floryan et al.® | current result, N = 60
0.5' i B360.69 | 2.893 0176474 0.1TH474 — 0.224745{—6 1
1 | 100 |5375.60 | 2588 | 0205978 | 0.205077 — 0.258216(—6)i
3 00 | 3707.23 | 1.898 0.245637 0.248637 — 0.104392(—T)
4" | 1000 | 3829.26 | 1.691 0.254439 0.254429 — 0.100337(—6):
1# | 10006 | 5414.59 | 1.001 0.263420 0.263420 — 0. 16362?( T
4% | 20000 | 5498.74 | 1.074 0.263643 0.263643 — 0.407B2L(—T)s

Typical profiles of eigenfunction ¢ and its derivative ¢' for shear and sur-
face modes are shown respectively in Figure 3 and 4. The results agree well
with De Bruin*. For shear mode, shown in Figure 3, ¢ and @' resembles their
counterparts of Tollmien-Schlichting wave for plane Poiseuille flow with slight
modification at the free surface, For surface mode, shown in Figure 4, the mag-
nitudes of ¢ and ¢’ are small near the wall but large as approaching the free
surface, which indicates the general feature of gravity—driven free surface wave.

B e

D R L L

asl ®

_Lu:.'.l Y e | Pl PRI e L i L "
10 08 -08B 07 08 05 04 03 02 O 00

y

Figure 3: A shear mode eigenfunction ¢ and its derivative ¢ o = 1.0354, ¢ =
0.2044281 — 0.3341756(—4)i, Re = 24065, 5 =0, and f# =1°.
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ligure 4: A surface mode eigenfunction ¢ and its derivative ¢t @ = 0.3597,c =
1814062  0.3843755( —6)i. Re = 100, 5 = 0, and § = 1°,

4. CONCLUSION

The current solver based on Chebyshev spectral collocation method together
with the companion matrix method and the reciprocal of condition number
minimization scheme shows high accuracy and computing efficiency in solving
&e whole Orr-Sommerfeld spectrum. Since the problem is physically better
interpreted by the concept of convective instability which is actually observed
&h ﬂxpmmenL:,, the future work is to solve the spatial version of the problem.
1 i more complicated and difficult to solve because the eigenvalue, that is the
?\'Enumber &, appears nonlinearly up to o in the guvcrmng equation, This
o causes the rank of matrices involved in the companion makrix method twice
. hrg: as the current situation, which is definitely more cpu time consuming.
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