A Note on Reaction-Diffusion Systems with Skew-Gradient Structure

Chao-Nien Chen* Tzyy-Leng Horng ${ }^{\dagger}$ Daniel Lee ${ }^{\ddagger}$ Chen-Hsing Tsai ${ }^{\S}$

Abstract

Reaction-diffusion systems with skew-gradient structure can be viewed as a sort of activatorinhibitor systems. We use variational methods to study the existence of steady state solutions. Furthermore, there is a close relation between the stability of a steady state and its relative Morse index. Some numerical results will also be disussed.

^[*Department of Mathematics, National Changhua University of Education, Changhua Taiwan, ROC. Email : macnchen@cc.ncue.edu.tw ${ }^{\dagger}$ Department of Applied Mathematics, Feng Chia University, Taichung, Taiwan, ROC. E-mail : tlhorng@math.fcu.edu.tw ${ }^{\ddagger}$ Department of Mathematics, Tunghai University, Taichung, Taiwan, ROC. E-mail : danlee@thu.edu.tw ${ }^{\S}$ General Education Center, Chung Chou Institute of Technology, Changhua Taiwan, ROC. E-mail : jenshing@dragon.ccut.edu.tw]

1 Introduction

In this note we consider reaction-diffusion systems of the form

$$
\begin{align*}
M_{1} u_{t}= & D_{1} \Delta u+F_{1}(u, v) \tag{1.1}\\
M_{2} v_{t}= & D_{2} \Delta v-F_{2}(u, v) \\
& x \in \Omega, t>0 \tag{1.2}
\end{align*}
$$

Here Ω is a smooth bounded domain in \mathbb{R}^{n}, $u(x, t)$ is an m_{1}-dimensional vector function, $v(x, t)$ is an m_{2}-dimensional vector function, M_{1}, M_{2}, D_{1} and D_{2} are positive definite matrices, and there exists a function F such that $\nabla F=\left(F_{1}, F_{2}\right)$. Such systems can be viewed as a sort of activator-inhibitor systems.

A well-known example is

$$
\begin{align*}
u_{t} & =d_{1} \Delta u+f(u)-v \tag{1.3}\\
\tau v_{t} & =d_{2} \Delta v+\sigma u-\gamma v \tag{1.4}
\end{align*}
$$

where $d_{1}, d_{2}, \sigma, \gamma, \tau \in(0, \infty)$ and f is a cubic polynomial. The case of $d_{2}=0$ has been con-
sidered as a model for the Hodgkin-Huxley system $[13,22]$ to describe the behavior of electrical impulses in the axon of the squid. More recently, several variations of this system appeared in neural net models for short-term memory and in nerve cells of heart muscle.

As in [29], (1.1)-(1.2) will be referred as a skew-gradient system in which a steady state is a critical point of

$$
\begin{align*}
\Phi(u, v)= & \int_{\Omega} \frac{1}{2}\left(D_{1} \nabla u, \nabla u\right)-\frac{1}{2}\left(D_{2} \nabla v, \nabla v\right) \\
& -F(u, v) d x \tag{1.5}
\end{align*}
$$

A steady state (\bar{u}, \bar{v}) is called a mini-maximizer of Φ if \bar{u} is a local minimizer of $\Phi(\cdot, \bar{v})$ and \bar{v} is a local maximizer of $\Phi(\bar{u}, \cdot)$. It has been shown [29] that non-degenerate mini-maximizers of Φ are linearly stable. This result gives a natural generalization of a stability criterion for the gradient system in which all the nondegenerate local minimizers are stable steady states.

A remarkable property proved in [29] is that any mini-maximizer must be spatially homogeneous if Ω is a convex set. This kind of results have been established by Casten and Holland [5] and Matano [20] for the scalar reactiondiffusion equation, and generalized by Jimbo and Morita [15] and Lopes [19] for the gradient
system. In case Ω is symmetric with respect to x_{j}, Lopes [19] showed that a global minimizer of gradient system is symmetric with respect to x_{j}; while Chen [7] obtained parallel results for the global mini-maximizers in the skew-gradient system.

In connection with calculus of variations, there is a close relation between the stability of a steady state of skew-gradient system and its relative Morse index. Based on this idea, some stability criteria for the steady states of (1.1)(1.2) are illustrated in section 2 . In section 3, variational arguments are used to study the existence of steady states and their relative Morse indices. Section 4 contains numerical investigation of skew-gradient systems. A particular example to be studied is

$$
\begin{aligned}
u_{t} & =d_{1} u_{x x}+f(u)-v-w, \\
\tau_{2} v_{t} & =d_{2} v_{x x}+u-\gamma_{2} v, \\
\tau_{3} w_{t} & =d_{3} w_{x x}+u-\gamma_{3} w,
\end{aligned}
$$

which served as a model [4] for gas-discharge systems.

2 Stability Criteria

Let E be a Hilbert space. For a closed subspace U of E, P_{U} denotes the orthogonal projection
from E to U and U^{\perp} denotes the orthogonal complement of U. For two closed subspaces U and W of E, denoted by $U \sim W$ if $P_{U}-P_{W}$ is a compact operator. In this case, both $W \cap U^{\perp}$ and $W^{\perp} \cap U$ are of finite dimensional. The relative dimension of W with respect to U is defined by

$$
\begin{align*}
\operatorname{dim}(W, U)= & \operatorname{dim}\left(W \cap U^{\perp}\right) \\
& -\operatorname{dim}\left(W^{\perp} \cap U\right) \tag{2.1}
\end{align*}
$$

If A is a self-adjoint Fredholm operator on E, there is a unique A-invariant orthogonal splitting

$$
E=E_{+}(A) \oplus E_{-}(A) \oplus E_{0}(A)
$$

with $E_{+}(A), E_{-}(A)$ and $E_{0}(A)$ being respectively the subspaces on which A is positive definite, negative definite and null. For a pair of self-adjoint Fredholm operators A and \bar{A}, it will be denoted by $A \sim \bar{A}$ if $E_{-}(A) \sim E_{-}(\bar{A})$. In this case, a relative Morse index $i(A, \bar{A})$ is defined by

$$
\begin{equation*}
i(A, \bar{A})=\operatorname{dim}\left(E_{-}(\bar{A}), E_{-}(A)\right) \tag{2.2}
\end{equation*}
$$

We refer to [1] for more details of relative Morse index.

For a critical point (\bar{u}, \bar{v}) of Φ, let $\Phi^{\prime \prime}(\bar{u}, \bar{v})$ denote the second Frechet derivative of Φ at
(\bar{u}, \bar{v}). A critical point (\bar{u}, \bar{v}) is called nondegenerate if the null space of $\Phi^{\prime \prime}(\bar{u}, \bar{v})$ is trivial. Let

$$
\begin{gathered}
M=\left(\begin{array}{cc}
M_{1} & 0 \\
0 & M_{2}
\end{array}\right), D=\left(\begin{array}{cc}
-D_{1} & 0 \\
0 & D_{2}
\end{array}\right) \\
Q=\left(\begin{array}{cc}
-I_{m_{1}} & 0 \\
0 & I_{m_{2}}
\end{array}\right)
\end{gathered}
$$

and I_{k} be the $k \times k$ identity matrix. For a gradient system, it is known that a non-degenerate critical point with non-zero Morse index is an unstable steady state. The next theorem gives a parallel result for the skew-gradient system.

Theorem 1. Suppose $i\left(-Q, \Phi^{\prime \prime}(\bar{u}, \bar{v})\right) \neq 0$ and $\operatorname{dim} E_{0}\left(\Phi^{\prime \prime}(\bar{u}, \bar{v})\right)=0$, then for any positive definite matrices M_{1} and $M_{2},(\bar{u}, \bar{v})$ is an unstable steady state of (1.1)-(1.2).

In [29] Yanagida pointed out an interesting property that a non- degenerate minimaximizer of Φ is always stable for any positive matrices M_{1} and M_{2} given in (1.1)-(1.2). An interesting question is whether there exist steady states with stability depending on the reaction rates of the system. Let P^{+}and P^{-}be the orthogonal projections from E to $E_{+}(Q)$ and $E_{-}(Q)$ respectively. Define $\Psi_{0}=$ $M^{-\frac{1}{2}}\left(D \Delta-\nabla^{2} F(\bar{u}, \bar{v})\right) M^{-\frac{1}{2}}, \psi_{1}=P^{-} \Psi_{0} P^{-}$
and $\psi_{2}=P^{+} \Psi_{0} P^{+}$. Set $m=m_{1}+m_{2}$, $\mathfrak{D}=H^{2}\left(\Omega, \mathbb{R}^{m}\right)$,

$$
\begin{equation*}
\rho_{i}\left(\psi_{1}\right)=\inf _{z \in \mathfrak{D}} \frac{\left\langle\psi_{1} z, z\right\rangle_{L^{2}}}{\left\|P^{-} z\right\|_{L^{2}}^{2}} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho_{s}\left(\psi_{2}\right)=\sup _{z \in \mathfrak{D}} \frac{\left\langle\psi_{2} z, z\right\rangle_{L^{2}}}{\left\|P^{+} z\right\|_{L^{2}}^{2}} . \tag{2.4}
\end{equation*}
$$

Theorem 2. Assume that $i\left(-Q, \Phi^{\prime \prime}(\bar{u}, \bar{v})\right)=0$ and $\operatorname{dim} E_{0}\left(\Phi^{\prime \prime}(\bar{u}, \bar{v})\right)=0$. Then (\bar{u}, \bar{v}) is stable if $\rho_{i}\left(\psi_{1}\right)>\rho_{s}\left(\psi_{2}\right)$.

Remark. In case we treat the Dirichlet boundary condition $\left.u\right|_{\partial \Omega}=\left.v\right|_{\partial \Omega}=0, \mathfrak{D}$ is replaced by $H^{2}\left(\Omega, \mathbb{R}^{m}\right) \bigcap H_{0}^{1}\left(\Omega, \mathbb{R}^{m}\right)$.

The proofs of Theorem 1 and Theorem 2 can be found in [8].

3 Applications of Theorem 1 and Theorem 2

In dealing with a strongly indefinite functional Φ, a critical point theorem established by Benci and Rabinowitz [3] can be used to obtain steady states of (1.1)-(1.2).

Theorem 3. Let E be a separable Hilbert space with an orthogonal splitting $E=W_{+} \oplus$
W_{-}, and $B_{r}=\{\xi \mid \xi \in E,\|\xi\|<r\}$. Assume that $\Phi(\xi)=\frac{1}{2}\langle\hat{\Lambda} \xi, \xi\rangle+b(\xi)$, where $\hat{\Lambda}$ is a selfadjoint invertible operator on $E, b \in C^{2}(E, \mathbb{R})$ and b^{\prime} is compact. Set $S=\partial B_{\rho} \cap W_{+}$and $N=\left\{\xi^{-}+s e \mid \xi^{-} \in B_{r} \cap W_{-}\right.$and $\left.s \in[0, \bar{R}]\right\}$, where $e \in \partial B_{1} \cap W_{+}, r>0$ and $\bar{R}>\rho>0$. If Φ satisfies (PS) ${ }^{*}$ condition and $\sup _{\partial N} \Phi<$ $\inf _{S} \Phi$, then Φ possesses a critical point $\bar{\xi}$ such that $\inf _{S} \Phi \geq \Phi(\bar{\xi}) \geq \sup _{\partial N} \Phi$. Moreover, if $W_{-} \sim E_{-}$, then

$$
\begin{align*}
i\left(\hat{\Lambda}, \Phi^{\prime \prime}(\bar{\xi})\right) & \leq \operatorname{dim}\left(W_{-}, E_{-}\right)+1 \leq i\left(\hat{\Lambda}, \Phi^{\prime \prime}(\bar{\xi})\right) \\
& +\operatorname{dim} E_{0}\left(\Phi^{\prime \prime}(\bar{\xi})\right) \tag{3.1}
\end{align*}
$$

Remark. (a) See e.g. [2, 8] for the definition of $(P S)^{*}$ condition.
(b) The index estimates (3.1) were obtained by Abbondandolo and Molina [2].

In a demonstration of using Theorem 3 to study the existence and stability of steady state solutions, we consider a perturbed FitzHugh-Nagumo system in the first example :

$$
\begin{array}{r}
u_{t}=d_{1} \Delta u+f(u)-v, \\
\tau v_{t}=d_{2} \Delta v+u-\gamma v-h(v) . \tag{3.3}
\end{array}
$$

A steady state of (3.2)-(3.3) is a critical point
of
$\Phi(u, v)=\int_{\Omega} \frac{d_{1}}{2}|\nabla u|^{2}-\frac{d_{2}}{2}|\nabla v|^{2}-F(u, v) d x$,
where

$$
\begin{align*}
F(u, v)= & -\left(\frac{1}{4} u^{4}-\frac{\beta+1}{3} u^{3}+\frac{\beta}{2} u^{2}\right)-u v \\
& +\frac{\gamma}{2} v^{2}+H(v), \tag{3.4}
\end{align*}
$$

$\beta \in\left(0, \frac{1}{2}\right)$ and $H(v)=\int_{0}^{v} h(y) d y$. It is assumed that $\gamma>9\left(2 \beta^{2}-5 \beta+2\right)^{-1}$, and h satisfies the following condition: (h1) $h \in C^{1}, h(0)=h^{\prime}(0)=0$ and $y h(y) \geq 0$ for $y \in \mathbb{R}$.

Define

$$
\Lambda=\left(\begin{array}{cc}
-d_{1} \Delta-f^{\prime}(0) & 1 \\
1 & d_{2} \Delta-\gamma
\end{array}\right)
$$

Let

$$
\begin{aligned}
\mu_{k}^{+}= & \frac{1}{2}\left[\left(d_{1}-d_{2}\right) \lambda_{k}-\left(f^{\prime}(0)+\gamma\right)\right. \\
& \left.+\sqrt{\left(\left(d_{1}+d_{2}\right) \lambda_{k}-f^{\prime}(0)+\gamma\right)^{2}+4}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\mu_{k}^{-}= & \frac{1}{2}\left[\left(d_{1}-d_{2}\right) \lambda_{k}-\left(f^{\prime}(0)+\gamma\right)\right. \\
& \left.-\sqrt{\left(\left(d_{1}+d_{2}\right) \lambda_{k}-f^{\prime}(0)+\gamma\right)^{2}+4}\right],
\end{aligned}
$$

where $\left\{-\lambda_{k}\right\}$ are the eigenvalues of the Laplace operator and $\left\{\phi_{k}\right\}$ are the corresponding eigenfunctions. By straightforward calculation details can be found in [8].

We now turn to some examples to seek stable steady states of skew-gradient systems. Consider

$$
\begin{array}{r}
u_{t}=\Delta u-u-v \\
\tau v_{t}=\Delta v+2 v+u-|v| v \tag{3.6}
\end{array}
$$

Straightforward calculation gives

$$
\Lambda=\left(\begin{array}{cc}
-\Delta+1 & 1 \\
1 & \triangle+2
\end{array}\right)
$$

$\mu_{k}^{+}=\frac{1}{2}\left(3+\sqrt{\left(2 \lambda_{k}-1\right)^{2}+4}\right)$ and $\mu_{k}^{-}=\frac{1}{2}(3-$ $\left.\sqrt{\left(2 \lambda_{k}-1\right)^{2}+4}\right)$. It is clear that $\mu_{k}^{+}>0$ for all $k \in \mathbb{N}$. Suppose Ω is a bounded domain in which the eigenvalue distribution of the Laplace operator (under homogeneous Dirichlet boundary conditions) satisfies the following property:

$$
\lambda_{1}<\frac{1}{2}(\sqrt{5}+1)<\lambda_{2} \leq \lambda_{3} \leq \cdots \leq \lambda_{k} \cdots
$$

Then it is easily seen that $\mu_{1}^{-}>0$, and $\mu_{k}^{-}<0$ if $k \geq 2$. It follows that $i(-Q, \Lambda)=-1$.

Theorem 5. There is a non-constant steady state (\bar{u}, \bar{v}) of (3.5)-(3.6). Moreover, if $\operatorname{dim}\left(\Phi^{\prime \prime}(\bar{u}, \bar{v})\right)=0$ and $\tau \geq \frac{2-\lambda_{1}}{1+\lambda_{1}}$, then (\bar{u}, \bar{v}) is stable.

In the next example, consider (1.3)-(1.4) with $f(u)=\alpha u-u^{3}$ and $\sigma=1$. Suppose
there is a $j \in \mathbb{N}$ such that if

$$
\begin{align*}
& d_{1} \lambda_{j}+\frac{1}{d_{2} \lambda_{j}+\gamma}<\alpha< \\
& \inf \left\{\left.d_{1} \lambda_{k}+\frac{1}{d_{2} \lambda_{k}+\gamma} \right\rvert\, k \in \mathbb{N} \backslash\{j\}\right\} \tag{3.7}
\end{align*}
$$

By direct calculation $\mu_{j}^{+}<0$ and $\mu_{k}^{+}>0$ for $k \in \mathbb{N} \backslash\{j\}$. Also, $\mu_{k}^{-}<0$ for all $k \in \mathbb{N}$. Hence $i(-Q, \Lambda)=1$. Applying Theorem 3 yields a steady state (\bar{u}, \bar{v}) of (1.3)-(1.4). Furthermore,

$$
\begin{aligned}
& i\left(-Q,-\Phi^{\prime \prime}(\bar{u}, \bar{v}) \leq 0 \leq i\left(-Q,-\Phi^{\prime \prime}(\bar{u}, \bar{v})\right)\right. \\
& +\operatorname{dim} E_{0}\left(\Phi^{\prime \prime}(\bar{u}, \bar{v})\right)
\end{aligned}
$$

This implies that $i\left(-Q,-\Phi^{\prime \prime}(\bar{u}, \bar{v})\right)=0$ if (\bar{u}, \bar{v}) is a non-degenerate critical point of Φ. Then by Theorem $2,(\bar{u}, \bar{v})$ is stable if $\tau<\frac{\gamma}{\alpha}$. In case of dealing with homogeneous Neumann boundary conditions, (\bar{u}, \bar{v}) is a spatially inhomogeneous steady state if (3.7) holds for $j \geq 2$. In other words, there exists a stable pattern for (1.3)(1.4).

For the FitzHugh-Nagumo system, the steady state solutions satisfy

$$
\begin{align*}
d_{1} \Delta u+f(u)-v & =0 \tag{3.8}\\
\frac{d_{2}}{\sigma} \Delta v+u-\frac{\gamma}{\sigma} v & =0 \tag{3.9}
\end{align*}
$$

where $f(u)=(1-u)(u-\beta) u, \beta \in\left(0, \frac{1}{2}\right)$. If $\mathcal{L}=$ $\sigma^{-1}\left(-d_{2} \Delta+\gamma\right)^{-1}$ under homogeneous Dirichlet (respectively Neumann) boundary conditions,
then for any critical point \bar{u} of
$\psi(u)=\int_{\Omega}\left[\frac{d_{1}}{2}\left(|\nabla u|^{2}+u \mathcal{L} u\right)-\int_{0}^{u} f(\zeta) d \zeta\right] d x$, $(\bar{u}, \mathcal{L} \bar{u})$ is a steady state of FitzHugh-Nagumo system. In view of the fact that $\sigma \int_{\Omega} u \mathcal{L} u d x=$ $\int_{\Omega} d_{2}|\nabla v|^{2}+\gamma v^{2} d x$, it is easily seen that ψ is bounded from below. In addition to minimizers, the Mountain Pass Lemma has been used to obtain non-trivial solutions $[9,10,11,17$, $21,24,28,32]$ of $(3.8)-(3.9)$

Let u be a critical point of ψ. Straightforward calculation yields

$$
\psi^{\prime \prime}(u)=-\Delta+\mathcal{L}-f^{\prime}(u)
$$

where $\psi^{\prime \prime}$ is the second Frechet derivative of ψ and the Morse index of u will be denoted by $i_{*}\left(\psi^{\prime \prime}(u)\right)$. On the other hand, $(u, \mathcal{L} u)$ is also a critical point of

$$
\begin{aligned}
\Phi(u, v)= & \int_{\Omega}\left[\frac{d_{1}}{2}|\nabla u|^{2}-\frac{d_{2}}{2 \sigma}|\nabla u|^{2}+u v\right. \\
& \left.-\frac{\gamma}{2 \sigma} v^{2}-\int_{0}^{u} f(\xi) d \xi\right] d x
\end{aligned}
$$

Proposition 1. If u is a critical point of ψ and $v=\mathcal{L} u$, then

$$
\operatorname{dim} E_{0}\left(\psi^{\prime \prime}(u)\right)=\operatorname{dim} E_{0}\left(\Phi^{\prime \prime}(u, v)\right)
$$

and

$$
i_{*}\left(\psi^{\prime \prime}(u)\right)=i\left(-Q, \Phi^{\prime \prime}(u, v)\right)
$$

We refer to [8] for a proof of Proposition 1. For a critical point u obtained by the Mountain Pass Lemma, it is known [6] that

$$
i_{*}\left(\psi^{\prime \prime}(u)\right) \leq 1 \leq i_{*}\left(\psi^{\prime \prime}(u)\right)+\operatorname{dim} E_{0}\left(\psi^{\prime \prime}(u)\right)
$$

Then by Proposition 1

$$
\begin{aligned}
& i\left(-Q, \Phi^{\prime \prime}(u, \mathcal{L} u)\right) \leq 1 \leq i\left(-Q, \Phi^{\prime \prime}(u, \mathcal{L} u)\right) \\
& +\operatorname{dim} E_{0}\left(\Phi^{\prime \prime}(u, \mathcal{L} u)\right)
\end{aligned}
$$

Thus if $\operatorname{dim} E_{0}\left(\psi^{\prime \prime}(u)\right)=0$, it follows from Theorem 1 that $(u, \mathcal{L} u)$ is an unstable steady state of (1.3)-(1.4).

Let $\hat{\psi}_{1}=P^{-}\left(D \Delta-\nabla^{2} F(\bar{u}, \bar{v})\right) P^{-}, \hat{\psi}_{2}=$ $P^{+}\left(D \Delta-\nabla^{2} F(\bar{u}, \bar{v})\right) P^{+}$,

$$
\begin{equation*}
\rho_{i}\left(\hat{\psi}_{1}\right)=\inf _{z \in \mathfrak{D}} \frac{\left\langle\hat{\psi}_{1} z, z\right\rangle_{L^{2}}}{\left\|P^{-} z\right\|_{L^{2}}^{2}} \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho_{s}\left(\hat{\psi}_{2}\right)=\sup _{z \in \mathfrak{D}} \frac{\left\langle\hat{\psi}_{2} z, z\right\rangle_{L^{2}}}{\left\|P^{+} z\right\|_{L^{2}}^{2}} \tag{3.11}
\end{equation*}
$$

Theorem 6. Assume that $i\left(-Q, \Phi^{\prime \prime}(\bar{u}, \bar{v})\right)=0$ and $\operatorname{dim} E_{0}\left(\Phi^{\prime \prime}(\bar{u}, \bar{v})\right)=0$. Then (\bar{u}, \bar{v}) is stable if one of the following conditions holds:
(i) $\rho_{i}\left(\hat{\psi}_{1}\right)>0, \rho_{s}\left(\hat{\psi}_{2}\right) \geq 0$ and

$$
\frac{\rho_{s}\left(\hat{\psi}_{2}\right)}{\rho_{i}\left(\hat{\psi}_{1}\right)}<\left\|M_{2}^{-1}\right\|^{-1}\left\|M_{1}\right\|^{-1}
$$

(ii) $\rho_{i}\left(\hat{\psi}_{1}\right) \leq 0, \rho_{s}\left(\hat{\psi}_{2}\right)<0$ and

$$
\frac{\rho_{i}\left(\hat{\psi}_{1}\right)}{\rho_{s}\left(\hat{\psi}_{2}\right)}<\left\|M_{1}^{-1}\right\|^{-1}\left\|M_{2}\right\|^{-1}
$$

Theorem 6 directly follows from Theorem 2.
We refer to [8] for the detail.
If u is a non-degenerate minimizer of ψ and $v=\mathcal{L} u$, then Proposition 1 implies that

4.1

We start with the following reaction-diffusion system :
$i(-Q, \Phi(u, v))=0$. Notice that

$$
\ddots-Q, \Psi(u, 0))-0 . \text { Notice vilat }
$$

$$
\begin{align*}
& D \Delta-\nabla^{2} F(u, v)= \\
& \left(\begin{array}{cc}
-d_{1} \Delta-f^{\prime}(u) & 1 \\
1 & \frac{d_{2}}{\sigma} \Delta-\frac{\gamma}{\sigma}
\end{array}\right) \tag{4.3}
\end{align*}
$$

Since $f^{\prime}(\xi)=-3 \xi^{2}+2(\beta+1) \xi-\beta \leq\left(\beta^{2}-\right.$ $\beta+1) / 3$, it easy to check that $\rho_{i}\left(\hat{\psi}_{1}\right)=$ $\rho_{i}\left(-d_{1} \Delta-f^{\prime}(u)\right) \geq d_{1} \lambda_{1}-\frac{\left(\beta^{2}-\beta+1\right)}{3}$ and be under consideration. In (4.1)-(4.3), u can $\rho_{s}\left(\hat{\psi}_{2}\right)=\rho_{s}\left(\frac{d_{2}}{\sigma} \Delta-\frac{\gamma}{\sigma}\right) \leq-\left(d_{2} \lambda_{1}+\gamma\right) / \sigma$, be viewed as an activator while v and w act where $\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \cdots \leq \lambda_{k}<\cdots$ are as inhibitors. In view of the theoretical rethe eigenvalues of $-\Delta$. If $\rho_{i}\left(\hat{\psi}_{1}\right) \leq 0$ and sults mentioned in the previous sections, we $\tau<\frac{3\left(d_{2} \lambda_{1}+\gamma\right)}{\sigma\left(\left(\beta^{2}-\beta+1\right)-3 d_{1} \lambda_{1}\right)}$, condition (ii) of Theorem 6 holds and consequently (u, v) is a stable steady state of (1.3)-(1.4).

4 Numerical Results

We report some numerical work on the skewgradient systems, and compare with the theoretical results.

$$
\begin{align*}
u_{t}= & d_{1} u_{x x}+u(u-\beta)(1-u) \\
& -v-w \tag{4.1}\\
\tau_{2} v_{t}= & d_{2} v_{x x}+u-\gamma_{2} v \tag{4.2}\\
\tau_{3} w_{t}= & d_{3} w_{x x}+u-\gamma_{3} w \\
& x \in(0,1), t>0
\end{align*}
$$

where $\beta=0.3, \gamma_{2}=1, \gamma_{3}=20$, and the homogeneous Neumann boundary conditions will look for the pattern formation for (4.1)-(4.3) in case the diffusion rate of the activator is small $\left(d_{1}=10^{-6}\right)$.

By taking $d_{2}=1$ and $d_{3}=10^{-6}$, various types of spatially inhomogeneous steady states have been observed through numerical calculation. In Figure 1 and Figure 3, there is one peak on the profile of u; the one in Figure 1 is symmetric with respect to the spatial variable, while the other is not. We found also instances of steady states with two peaks on the profile
of u; but the distance between peaks can be different. We remark based on numerical observation that, with $\tau_{2}=\tau_{3}=10^{-4}$, such inhomogeneous steady states are stable under the flow generated by (4.1)-(4.3). Moreover, the solution profiles tell that w is roughly equal to $\gamma_{3}^{-1} u$ in magnitude.

Figure 3: solution profile of u

Figure 4: profiles of v and w

Figure 5: solution profile of u

Figure 6: profiles of v and w

Figure 7: solution profile of u

Figure 8: profiles of v and w

We next turn to the case when both inhibitors v and w are acting with large diffusion $\left(d_{2}=d_{3}=1\right)$. As show in Figure 9-10, the pulse (or peak of u) becomes wider. The fact that $\gamma_{3}>\gamma_{2}$ results in $v>w$.

Figure 9: solution profile of u

Figure 10: profiles of v and w

Keeping $d_{3}=1$ and reducing d_{2} to 10^{-1}, we obtain a stable steady state with rather different profiles as shown in Figure 11-12.

Figure 11: solution profile of u

Figure 12: profiles of v and w

4.2

In this subsection we come back to the reaction-diffusion system

$$
\begin{aligned}
u_{t}= & u_{x x}-u-v \\
\tau v_{t}= & v_{x x}+2 v+u-|v| v \\
& x \in(0,3), t>0 \\
u(0, t)= & v(0, t)=u(3, t)=v(3, t)=0
\end{aligned}
$$

As we know from Theorem 5, the choice of $\tau=0.1$ leads the flow converging to a nonconstant steady state (Figure 13). The behavior in the phase plane of the state variables, at the midpoint of the domain ($x=1.5$), exhibits a spiral-inward convergence (Figure 14).

On the other hand, we conjecture that such a non-constant steady state become unstable if the value of τ is taking much smaller. Indeed, when $\tau=0.005$, we observed a time-periodic attractor (Figure 15-16) .

Figure 13: flow of u with $\tau=0.1$

Figure 14: the trajectory of $(u(1.5, t), v(1.5, t))$

Figure 17: Historic space-accumulated l_{1}-difference of u

Figure 18: Historic space-accumulated l_{1}-difference of v

Figure 16: the trajectory of $(u(1.5, t), v(1.5, t)$

The convergence history of the two calculated state variables is recorded in Figure 1718, which strongly suggests the existence of a stable time-periodic solution. The change of stability seems to result from a Hopf bifurcation and deserves further investigation.

Acknowledgments

Research is supported in part by the National Science Council, Taiwan, ROC.

References

[1] A. Abbondandolo, "Morse Theory for Hamiltonian Systems", Chapman

Hall/CRC Research Notes in Mathematics, 425 (2001).
[2] A. Abbondandolo and J. Molina, Index estimates for strongly indefinite functionals, periodic orbits and homoclinic solutions of first order Hamiltonian systems, Calc. Var. 11 (2000), 395-430.
[3] V. Benci and P. H. Rabinowitz, Critical point theorems for indefinite functionals, Invent. Math. 52 (1979), 241-273.
[4] M. Bode, A. W. Liehr, C. P. Schenk and H. -G. Purwins, Interaction of dissipative solitons: particle-like behaviour of localized structures in a three-component reaction-diffusion system, Physica D $\mathbf{1 6 1}$ (2002), 45-66.
[5] R. G. Casten and C. J. Holland, Instability results for reaction diffusion equations with Neumann boundary conditions, J. Differential Equations 27 (1978), 266273.
[6] K. C. Chang, "Infinite Dimensioanl Morse Theory and Multiple Solution Problems", Birkhäuser. Basel, 1993.
[7] C. -C. Chen, Symmetry properties for the mini-maximizers of skew-gradient systems, Private communication.
[8] C. -N. Chen and X. Hu, Stability criteria for reaction-diffusion systems with skewgradient structure, Communications in Partial Differential Equations 33 (2008), 189-208.
[9] E. N. Dancer and S. Yan, Multipeak solutions for the Neumann problem of an elliptic system of FitzHugh-Nagumo type, Proc. London Math. Soc. 90 (2005), 209244.
[10] E. N. Dancer and S. Yan, A minimization problem associated with elliptic systems of FitzHugh-Nagumo type, Ann. IHPAnalyse Nonlineaire 21 (2004), 237-253.
[11] E. N. Dancer and S. Yan, Peak solutions for an elliptic system of FitzHughNagumo type, Ann. Sc. Norm. Super. Pisa Cl. Sci. 2 (2003), 679-709.
[12] D. G. de Figueiredo and E. Mitidieri, A maximum principle for an elliptic system and applications to semilinear problems, SIAM J. Math. Anal. 17 (1986), 836-849.
[13] R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J. 1 (1961), 445-466.
[14] A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik 12 (1972), 30-39.
[15] S. Jimbo and Y. Mortia, Stability of nonconstant steady-state solutions to a Ginzburg-Landau equation in higher space dimensions, Nonlinear Anal. 22 (1984), 753-770.
[16] H. Kielhofer, Stability and semilinear evolution equations in Hilbert space, Arch. Rational Mech. Anal. 57 (1974), 150-165.
[17] G. Klaasen and E. Mitidieri, Standing wave solutions for system derived from the FitzHugh-Nagumo equations for nerve conduction, SIAM. J. Math. Anal. 17 (1986), 74-83.
[18] G. Klaasen and W. Troy, Stationary wave solutions of a system of reaction-diffusion equations derived from the FitzHughNagumo equations, SIAM J. Appl. Math. 44 (1984), 96-110.
[19] O. Lopes, Radial and nonradial minimizers for some radially symmetric function-
als, Electron. J. Differential Equations 1996 (1996), 1-14.
[20] H. Matano, Asymptotic behaviour and stability of solutions of semilinear elliptic equations, Pub. Res. Inst. Math. Sci. 15 (1979), 401-454.
[21] H. Matsuzawa, Asymptotic profiles of variational solutions for a FitzHughNagumo type elliptic system, Differential Integral Equations 16 (2003) 897-926.
[22] J. Nagumo, S. Arimoto, and S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proc. I. R. E. 50 (1962), 2061-2070.
[23] Y. Nishiura and M. Mimura, Layer oscillations in reaction-diffusion systems, SIAM J. Appl. Math. 49 (1989), 481-514.
[24] Y. Oshita, On stable nonconstant stationary solutions and mesoscopic patterns for FitzHugh-Nagumo equations in higher dimensions, J. Differential Equations 188 (2003), 110-134.
[25] P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations", C.B.M.S. Reg.

Conf. Series in Math. No. 65, Amer. Math. Soc., Providence, RI, 1986.
[26] C. Reinecke and G. Sweers, A positive solution on \mathbb{R}^{n} to a equations of FitzHughNagumo type, J. Differential Equations 153 (1999), 292-312.
[27] C. Reinecke and G. Sweers, Existence and uniqueness of solutoin on bounded domains to a FitzHugh-Nagumo type elliptic system, Pacific J. Math. 197 (2001), 183211.
[28] X. Ren and J. Wei, Nucleation in the FitzHugh-Nagumo system: Interfacespike solutions, J. Differential Equations 209 (2005), 266-301.
[29] E. Yanagida, Mini-maximizers for reaction-diffusion systems with skewgradient structure, J. Differential Equations 179 (2002), 311-335.
[30] E. Yanagida, Standing pulse solutions in reaction-diffusion systems with skewgradient structure, J. Dynam. Differential Equations 14 (2002), 189-205.
[31] E. Yanagida, Reactoin-diffusion systems with skew-gradient structure, IMS

Workshop on Reaction-Diffusion Systems, Methods Appl. Anal. 8 (2001), 209-226.
[32] J. Wei and M. Winter, Clustered spots in the FitzHugh-Nagumo system, J. Differential Equations 213 (2005), 121-145.

